Orthonormal basis

A subset {v1,...,vk}\{v_1,...,v_k\} of a vector space 𝐕\mathbf{V}, with the inner product ,\langle,\rangle, is called orthonormal if vi,vj=0\langle v_i,v_j \rangle=0 when iji \neq j. That is, the vectors are mutually perpendicular. Moreover, they are all required to have length one: vi,vi=1\langle v_i,v_i \rangle=1.


Representation of 1D Signal Using An Orthonormal Basis

Orthonormal basis function

ϕ(x,u1)ϕ*(x,u2)dx={1,u1=u20,u1u2\int_{-\infty}^\infty \phi(x,u_1) \phi^*(x,u_2) dx = \begin{cases}1, u_1 = u_2 \\ 0, u_1 \neq u_2\end{cases}

Inverse transform

Forward transform

Orthonormal basis vectors

see Orthonormal basis vectors


References:

  1. https://mathworld.wolfram.com/OrthonormalBasis.html
  2. https://www.sciencedirect.com/topics/computer-science/orthonormal-basis